216 research outputs found

    Cursive script recognition using wildcards and multiple experts

    Get PDF
    Variability in handwriting styles suggests that many letter recognition engines cannot correctly identify some hand-written letters of poor quality at reasonable computational cost. Methods that are capable of searching the resulting sparse graph of letter candidates are therefore required. The method presented here employs ‘wildcards’ to represent missing letter candidates. Multiple experts are used to represent different aspects of handwriting. Each expert evaluates closeness of match and indicates its confidence. Explanation experts determine the degree to which the word alternative under consideration explains extraneous letter candidates. Schemata for normalisation and combination of scores are investigated and their performance compared. Hill climbing yields near-optimal combination weights that outperform comparable methods on identical dynamic handwriting data

    Exploiting zoning based on approximating splines in cursive script recognition

    Get PDF
    Because of its complexity, handwriting recognition has to exploit many sources of information to be successful, e.g. the handwriting zones. Variability of zone-lines, however, requires a more flexible representation than traditional horizontal or linear methods. The proposed method therefore employs approximating cubic splines. Using entire lines of text rather than individual words is shown to improve the zoning accuracy, especially for short words. The new method represents an improvement over existing methods in terms of range of applicability, zone-line precision and zoning-classification accuracy. Application to several problems of handwriting recognition is demonstrated and evaluated

    Handwriting style classification

    Get PDF
    This paper describes an independent handwriting style classifier that has been designed to select the best recognizer for a given style of writing. For this purpose a definition of handwriting legibility has been defined and a method implemented that can predict this legibility. The technique consists of two phases. In the feature-extraction phase, a set of 36 features is extracted from the image contour. In the classification phase, two nonparametric classification techniques are applied to the extracted features in order to compare their effectiveness in classifying words into legible, illegible, and middle classes. In the first method, a multiple discriminant analysis (MDA) is used to transform the space of extracted features (36 dimensions) into an optimal discriminant space for a nearest mean based classifier. In the second method, a probabilistic neural network (PNN) based on the Bayes strategy and nonparametric estimation of probability density function is used. The experimental results show that the PNN method gives superior classification results when compared with the MDA method. For the legible, illegible, and middle handwriting the method provides 86.5% (legible/illegible), 65.5% (legible/middle), and 90.5% (middle/illegible) correct classification for two classes. For the three-class legibility classification the rate of correct classification is 67.33% using a PNN classifier

    Extraction and characterisation of β-galactosidase produced by Bifidobacterium animalis spp. lactis Bb12 and Lactobacillus delbrueckii spp. bulgaricus ATCC 11842 grown in whey

    Get PDF
    published_or_final_versio
    • …
    corecore